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Abstract

The goal of this paper is to prove that the range of a two dimensional simple

random walk at time n has roughly the size of the form cn/ log n where c is a constant.

We begin by decomposing the range using several new random variables. The whole

proof also requires generating functions and Tauberian theorem on series convergence.

We show that the range not only has a expected size of πn/ log n, but also converges

to it in probability.

ii
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1 Introduction

Random walk is one of the most studied topics in probability theory. The intuition

of the simplest random walk process is the following: you start from somewhere on a

straight line. Every time before you move, you flip a coin to decide which way to go.

If the head turns up, you move one step to the right. Otherwise, you move one step

to the left (or vice versa). The simple one dimensional random walk is the random

variable that determines your location after n tosses.

In this paper, we are interested in the range of two dimensional simple random

walk on integer lattices. We start by setting the basic definitions and notations.

The standard basis of vectors in Z2 is denoted by e1 = (1, 0) and e2 = (0, 1). Our

discrete time, simple random walk starts from the origin (0, 0) ∈ Z2. The random

walk variable Sn can be considered the sum of a sequence of independent, identically

distributed random variables

Sn = X1 +X2 + · · ·+Xn (1.1)

where P{Xi = ek} = P{Xi = −ek} = 1/4, k = 1, 2, i = 1, 2, . . . , n. Hence, for each

step there are four choices on which direction to go. All four directions have equal

chances of being chosen.

Next, we need to define the transition probability. In general, the n-step distri-

bution is denoted by pn(x, y) with

pn(x, y) = P{Sn = y|S0 = x} (1.2)
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Since we have S0 = 0 by assumption, we use pn(x) for pn(x, 0). Note that pn describes

the distribution of the location variable after n steps.

Our goal is to give an estimation of the size of the two dimensional random walk

range. Throughout the paper, the term step and time are interchangeable, and n-th

step and time n have the same meaning. The range of an n-step random walk, Rn, is

a random variable that characterizes the number of distinct points visited at time n:

Rn = card{S0, S1, . . . , Sn},∀n ∈ N (1.1)

In the following sections, we will examine various properties of Rn and pn(x). In

section two, the range is decomposed and analyzed. In section three and four, we

compute the expected value and the variance of Rn, respectively. The generating

function method follows some of the arguments in [LL10].
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2 Decomposition of the Range

First, we create a new random variable γn, n ∈ N+

γn =


1 if n-th step hits a new spot

0 otherwise

(2.1)

Note that Rn =
∑n

i=1 γi simply because γ exactly characterizes the chance of visiting

a new location in each step, thus summing up to the total number of distinct locations

visited after n steps. Now we have our first proposition on the property of γ.

Proposition 1. The expected value of γn is equal to the probability of never going

back to the origin in n steps.

Proof. we can decompose γn in the following way:

E[γn] = P{n-th step hits a new spot}

= P{Sn 6= Sn−1, Sn 6= Sn−2, . . . , Sn 6= S0 = 0}

= P{Sn − Sn−1 6= 0, Sn − Sn−2 6= 0, . . . , Sn 6= 0}

= P{Xn 6= 0, Xn +Xn−1 6= 0, . . . , Xn +Xn−1 + · · ·+X1 6= 0}

= P{X1 6= 0, X1 +X2 6= 0, . . . , X1 +X2 + · · ·+Xn 6= 0}

= P{Si 6= 0, i = 1, 2, . . . , n}

we reverse the path between the fourth and the fifth line because all Xi are i.i.d

random variables. Since pn(0) = P{Sn = 0} = 0 for all odd n, we extend our index

to 2n to study some properties of p2n(0) and γ2n.
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Proposition 2. Let un(0) denote the probability of visiting the origin for the first

time (not including n = 0). We have the following recurrence relation:

n∑
i=1

u2i(0)p2n−2i(0) = p2n(0) (2.2)

Proof. p2n(0) simply represents the probability of arriving at the origin at time 2n.

Using the basic counting technique and conditioning on the first visit to the origin,

we have n different cases. Because the first visiting time is a stopping time, by Strong

Markov Property, the process after 2i-th step is identical to the random walk starting

from (0, 0) with 2n− 2i future steps. Therefore, u2i(0)p2n−2i(0) is the probability of

visiting the origin for the first time at 2i-th step and finally coming back to the origin

after another 2n− 2i steps. Adding all different cases, we have

p2n(0) = u2(0)p2n−2(0) + u4(0)p2n−4(0) + · · ·+ u2n(0)p0(0)

which means
∑n

i=1 u2i(0)p2n−2i(0) = p2n(0).

So how can we estimate p2n(0)? In literature, it is popular to use local central

limit theorem for high dimensional random walks. Here, we can use a combinatorial

approach for the two dimensional case. A 2n-step random walk has in total 42n

choices. In order to get back to the origin at time 2n, the walker must have k steps

(0 ≤ k ≤ n) moving towards the direction of e1 and the other k steps towards the

exact opposite direction (−e1). Similarly, there are n−k steps towards e2 and another

n− k steps towards −e2. As a result, we are able to write p2n(0) as

p2n(0) = P{S2n = 0} = 4−2n
n∑

k=0

(2n)!

k!k!(n− k)!(n− k)!
= 4−2n

(
2n

n

)(
2n

n

)
(2.3)
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Using the Stirling’s formula, we have

p2n(0) = 4−2n
(

2n

n

)(
2n

n

)
=

(2n)!2

42nn!4

∼ 2π42n+(1/2)n4n+1e−4n

42n4π2n4n+2e−4n

=
1

nπ

This formula holds for n ∈ N+. When n = 0, p0(0) = P{S0 = 0} = 1.
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3 Estimating the Expectation

For the two dimensional random walk, the Green’s generating function is defined

to be

G(x) =
∞∑
n=0

xnpn(0) (3.1)

Since pn(0) ∈ (0, 1) when n > 1, n even, the power series converges absolutely when

|x| < 1.

Similarly, we can define the generating function of first visits to be

F (x) =
∞∑
n=1

xnun(0) (3.2)

The sum also converges absolutely when |x| < 1. We can then prove the following

proposition:

Proposition 3.

G(x) =
1

1− F (x)
(3.3)

Proof. By Proposition 2, we can multiply both sides by xn and rearrange to get

xnp2n(0) = xn
n∑

i=1

u2i(0)p2n−2i(0)

=
n∑

i=1

(
xiu2i(0)

) (
xn−ip2n−2i(0)

)
Including odd terms does not affect this equation. As n→∞, we have

∞∑
n=1

xnpn(0) =

[
∞∑
n=1

xnun(0)

][
∞∑

m=0

xmpm(0)

]
(3.4)

which leads to

G(x)− p0(0) = F (x)G(x)
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G(x) (1− F (x)) = 1

Since 0 < F (x) < 1, we have

G(x) =
1

1− F (x)

Now we need to build the link between γn and un(0). Let E[γn] = bn, we have the

following proposition:

Proposition 4. For x ∈ (0, 1),

(1− x)
∞∑
n=0

xnbn = 1−
∞∑
n=1

xnun(0) (3.5)

Proof. By Proposition 1,

bn = E[γn] = P{Si 6= 0, i = 1, 2, . . . , n}

Consider the probablistic meaning behind these two sums. Think of 1 − x as the

geometric killing rate of the random walk. That is, for each step the walker has

1 − x probability of being killed. Since un(0) = P{S1 6= 0, . . . , Sn−1 6= 0, Sn = 0},∑∞
n=1 x

nun(0) represents the probability of returning the origin before being killed.

Thus, the right hand side of (3.5) is the probability of being killed without ever getting

back to the origin. This is exactly the probablistic meaning of the left hand side.

Now that we have figured out the relationship between generating functions of bn,

un, and pn, we can derive the explicit form of the generating function of bn.
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Proposition 5. The generating function of bn has the form

∞∑
n=0

xnbn ∼
π

1− x

[
log

(
1

1− x

)]−1
(3.6)

when x→ 1−.

Proof. By the definition of G(x) and the estimation of pn(0) derived in section 2, we

have

G(x) =
∞∑
n=0

xnpn(0) ∼ 1 +
∞∑
n=1

x2n

nπ
(3.7)

the power series is convergent for |x| < 1. So as x → 1−, we can differentiate

term-by-term to get

d

dx
G(x) ∼ 2

π

∞∑
n=1

x2n−1 =
2x

π(1− x2)

G(x) ∼ 1

π

[
log

(
1

1− x

)]
(3.8)

Together with Proposition 3 and 4, we have

∞∑
n=0

xnbn =
1

1− x
(1− F (x)) =

1

1− x
G(x)−1 ∼ π

1− x

[
log

(
1

1− x

)]−1

Now it is possible to give an estimation of the expected range. This next propo-

sition is proved using some of the Tauberian thoughts on series convergence.

Proposition 6.
n∑

i=0

bi ∼
nπ

log n
, n→∞ (3.9)
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Proof. This result is a simplified version of Proposition A.5.3 of [LL10]. In particular,

we use the special case when α = −1.

Therefore, the expected range of two dimensional simple random walk at time n

is approximately nπ/ log n. This is a result we desired.
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4 Estimating the Variance

Now we want to estimate the variance for the range of two dimensional simple

random walk. Again, we need to define a new random variable to calculate the second

moment of Rn.

γm,n =


1 if both m-th and n-th step hit a new spot

0 otherwise

(4.1)

Similarly, let bm,n denote E[γm,n]. We can use the following decomposition, given the

condition that 1 ≤ m ≤ n:

bm,n = P{Sm 6= Sm−1, . . . , Sm 6= S0;Sn 6= Sn−1, . . . , Sn 6= S0}

≤ P{Sm 6= Sm−1, . . . , Sm 6= S0;Sn 6= Sn−1, . . . , Sn 6= Sm}

= P{Sm 6= Sm−1, . . . , Sm 6= S0} ∗ P{Sn−m 6= Sn−m−1, . . . , Sn−m 6= S0}

= bm ∗ bn−m

Together with the fact that E[R2
n] =

∑n
i,j=0 bi,j, we have

V ar[Rn] = E[R2
n]− E[Rn]2

=
n∑

i,j=0

bi,j −
n∑

i=0

bi

n∑
j=0

bj

=
n∑

i=0

n∑
j=0

(bi,j − bibj)

≤ 2
∑

0≤i≤j≤n

(bi,j − bibj)

≤ 2
∑

0≤i≤j≤n

(bibj−i − bibj)
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The next step involves using the property of the sequence {bn}. Remember that

bn = P{Si 6= 0, i = 1, 2, . . . , n}. It is a decreasing sequence, which leads to the fact

that
n∑

j=i

(bj−i − bj) = (b0 + b1 + · · ·+ bn−i)− (bi + bi+1 + · · ·+ bn)

is maximized when we let i be around n/2 (round off n/2 downward). Therefore, we

have

V ar[Rn] ≤ 2
∑

0≤i≤j≤n

(bibj−i − bibj)

= 2
n∑

i=0

bi

n∑
j=i

(bj−i − bj)

≤ 2
n∑

i=0

bi

 n/2∑
i=0

2bi −
n∑

i=0

bi


= 2E[Rn]

(
2E[Rn

2
]− E[Rn]

)
Plug in the value of E[Rn] derived in Proposition 6, we can obtain the upper bound

of the variance

V ar[Rn] ≤ 2nπ

log n

(
nπ

log n
2

− nπ

log n

)
=

n2π2 log 4

log n
2

log n log n
(4.2)

Now we can apply Chebyshev’s Inequality to show that Rn obeys the weak law of

large numbers.

Proposition 7.

R̄n
p−→ nπ

log n
(4.3)

when n→∞.
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Proof. First, we define σn = V ar[Rn]
1
2 and φn =

√
log n

2

log 4
. By (4.2), the standard

deviation of Rn is

σn ≤

√
n2π2 log 4

log n
2

log n log n
∼ E[Rn]

√
log 4

log n
2

= E[Rn]φ−1n (4.4)

Therefore, by Chebyshev’s Inequality,

P
(∣∣∣∣Rn −

nπ

log n

∣∣∣∣ ≥ nπ

log n

)
= P

(∣∣∣∣Rn −
nπ

log n

∣∣∣∣ ≥ φnσn

)
≤ 1

φ2
n

This result gives a good estimation of the distribution of realized random walk range.

Meanwhile, as n→∞, we have

lim
n→∞

P
(∣∣∣∣Rn −

nπ

log n

∣∣∣∣ ≥ φnσn

)
≤ lim

n→∞

1

φ2
n

= lim
n→∞

log 4

log n
2

= 0

This result gives a good estimation of the distribution of realized random walk

range. Because

P
(∣∣∣∣Rn −

nπ

log n

∣∣∣∣ ≥ nπ

k log n

)
= P

(∣∣∣∣Rn −
nπ

log n

∣∣∣∣ ≥ φnσn
k

)
≤ k2

φ2
n

as n→∞, we are able to bound the realized range almost surely for any k > 0. For

example, when k = 2, we can construct the following table:
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n min % within half expected range max % beyond half expected range

10 0% 100%

20 0% 100%

30 0% 100%

40 0% 100%

50 13.1% 86.9%

60 35.1% 64.9%

70 52.9% 47.1%

80 67.6% 32.4%

90 80.2% 19.8%

100 91.1% 8.9%
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